A bridging law and its application to the analysis of toughness of carbon nanotube-reinforced composites and pull-out of fibres grafted with nanotubes
نویسندگان
چکیده
Bridging laws are essential in predicting the mechanical behaviour of conventional short-fibrereinforced composites and the emerging nanofibre-reinforced composites. In this paper, we first review some studies on the toughness of carbon nanotube-reinforced composites that is induced by the pull-out of the nanotubes from the matrix, and on the development of the corresponding bridging laws. A close examination of the available bridging laws for carbon nanotubes reveals that some fundamental issues need to be further addressed. We propose a simple nonlinear and smooth bridging law to describe the pull-out force–displacement behaviour of carbon nanotubes from a matrix. This law contains only two material parameters, reflects the basic features of the pull-out experiments, and is easy to use. We then use this bridging law to calculate the fracture toughness of carbon nanotube-reinforced nanocomposites and predict the pull-out force–displacement response of conventional short fibres that are grafted with carbon nanotubes. Some parametric studies are conducted to reveal the influence of various parameters at the nanoand micro-scale on these properties.
منابع مشابه
Increasing flexural strength and toughness of cement mortar using multi-walled Carbon nanotubes
In this study the effect of using multi-walled carbon nanotube (MWCNT) on flexural and compressive strengths, ultimate displacement and energy absorption capability of standard cement mortar considering different weight percentages of nanotubes as well as different dispersion methods has been investigated. Influential point in adding nanotubes to the composites is their proper dispersion, which...
متن کاملIncreasing flexural strength and toughness of cement mortar using multi-walled Carbon nanotubes
In this study the effect of using multi-walled carbon nanotube (MWCNT) on flexural and compressive strengths, ultimate displacement and energy absorption capability of standard cement mortar considering different weight percentages of nanotubes as well as different dispersion methods has been investigated. Influential point in adding nanotubes to the composites is their proper dispersion, which...
متن کاملInvestigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach
In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...
متن کاملElectrical and electromagnetic properties of isolated carbon nanotubes and carbon nanotube-based composites
Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinf...
متن کاملStrength and Toughness of Reinforced Concrete with Coated Steel Fibers
The effect of zinc phosphate (ZP) and zinc calcium phosphate (ZCP) coatings on the reinforcing mechanisms of smooth steel fiber in cementitious matrix have been studied. The results of pull out tests illustrated that by coating smooth steel fiber the pull-out load may be increased up to 100%. The effect of zinc phosphate coating on interface bonding was more than zinc-calcium phosphate coating....
متن کامل